- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Jheng, Nai‐Yuan (1)
-
Moniruzzaman, Moniruzzaman (1)
-
Waterman, Rory (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Hydrophosphination using calcium compounds as catalysts under irradiation is described as a foray into s‐block photocatalysis. Transition‐metal compounds have been highly successful hydrophosphination catalysts under photochemical conditions, utilizing substrates previously considered inaccessible. A calcium hydrophosphination precatalyst, Ca(nacnac) (THF) (N(SiMe3)2) (1, nacnac = HC[(C(Me)N‐2,6‐iPr2C6H3)]2), reported by Barrett and Hill, as well as the presumed intermediate, Ca(nacnac) (THF) (PPh2) (2), and the Schlenk equilibrium product, Ca[N(SiMe3)2]2(THF)2(3) were screened under photochemical conditions with a range of unsaturated substrates including styrenic alkenes, Michael acceptors, and dienes with modest to excellent conversions, though unactivated alkenes were inaccessible. All compounds exhibit enhanced catalysis under irradiation by light emitting diode (LED)‐generated blue light. Nacnac‐supported compounds generate radicals as evidenced by Electron Paramagnetic Resonance (EPR) spectroscopy and radical trapping reactions, whereas unsupported calcium compounds are EPR silent and appear to undergo hydrophosphination akin to thermal reactions with these compounds. These results buttress the notion that photoactivation of π‐basic ligands is a broad phenomenon, extending beyond the d‐block, but like d‐block metals, consideration of ancillary ligands is essential to avoid radical reactivity.more » « less
An official website of the United States government
